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Instead an Epigraph

There is a parable that the population of one small south russian town in the old days

was divided between parishioners of the Christian church and the Jewish synagogue.

A Christian priest was already heavily wiser by a life experience, and the rabbi was

still quite young and energetic.

One day the rabbi came to the priest for advice.

- My colleague, - he said, - I lost my bike. I feel that it was stolen by someone from there,

but who did it I can not identify. Tell me what to do.

- Yes, I know one scientific method for this case, - replied the priest.

You should do this: invite all your parishioners the synagogue and read them the�Ten

Commandments of Moses�. When you read�Thou shalt not steal�, lift your head and

look carefully into the eyes of your listeners. The listener who turns his eyes aside will be

the guilty party.

A few days later, the rabbi comes to visit the priest with a bottle of Easter-vodka and

on his bike. The priest asked the rabbi to tell him what happened in details. The rabbi

told the priest that his theory had worked in practice and the bike was found. The rabbi

relayed the story:

- I collected my parishioners and began to preach. While I approached reading the�Do

not commit adultery� commandment I remembered then where I forgotten my bike!

So it is true: there is indeed nothing more practical than a good theory!





Chapter 6

Superconductivity as a
Consequence of Ordering of
Zero-Point Oscillations in
Electron Gas

6.1 Superconductivity as a Consequence of Ordering of
Zero-Point Oscillations

Superfluidity and superconductivity, which can be regarded as the superfluidity of the
electron gas, are related phenomena. The main feature of these phenomena can be seen
in a fact that a special condensate in superconductors as well as in superfluid helium is
formed from particles interconnected by attraction. This mutual attraction does not allow
a scattering of individual particles on defects and walls, if the energy of this scattering is
less than the energy of attraction. Due to the lack of scattering, the condensate acquires
ability to move without friction.



Superconductivity and Superfluidity

Superconductivity was discovered over a century ago, and the superfluidity about thirty
years later.

However, despite the attention of many scientists to the study of these phenomena, they
have been the great mysteries in condensed matter physics for a long time. This mystery
attracted the best minds of the twentieth century.

The mystery of the superconductivity phenomenon has begun to drop in the middle of
the last century when the effect of magnetic flux quantization in superconducting
cylinders was discovered and investigated. This phenomenon was predicted even before
the WWII by brothers F. London and H. London, but its quantitative study were
performed only two decades later.

By these measurements it became clear that at the formation of the superconducting
state, two free electrons are combined into a single boson with zero spin and zero
momentum.

Around the same time, it was observed that the substitution of one isotope of the
superconducting element to another leads to a changing of the critical temperature of
superconductors: the phenomenon called an isotope-effect [35], [36]. This effect was
interpreted as the direct proof of the key role of phonons in the formation of the
superconducting state.

Following these understandings, L. Cooper proposed the phonon mechanism of
electron pairing on which base the microscopic theory of superconductivity (so called
BCS-theory) was built by N. Bogolyubov and J. Bardeen, L. Cooper and J. Shrieffer
(probably it should be named better the Bogolyubov-BCS-theory).

However the B-BCS theory based on the phonon mechanism brokes a hypothetic link
between superconductivity and superfluidity as in liquid helium there are no phonons for
combining atoms.

Something similar happened with the description of superfluidity.

Soon after discovery of superfluidity, L. D. Landau in his first papers on the subject
immediately demonstrated that this superfluidity should be considered as a result of
condensate formation consisting of macroscopic number of atoms in the same quantum
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state and obeying quantum laws. It gave the possibility to describe the main features of
this phenomenon: the temperature dependence of the superfluid phase density, the
existence of the second sound, etc. But it does not gave an answer to the question which
physical mechanism leads to the unification of the atoms in the superfluid condensate
and what is the critical temperature of the condensate, i.e. why the ratio of the
temperature of transition to the superfluid state to the boiling point of helium-4 is almost
exactly equals to 1/2, while for helium-3, it is about a thousand times smaller.

On the whole, the description of both super-phenomena, superconductivity and
superfluidity, to the beginning of the twenty first century induced some feeling of
dissatisfaction primarily due to the fact that a common mechanism of their occurrence
has not been understood.

More than fifty years of a study of the B-BCS-theory has shown that this theory
successfully describes the general features of the phenomenon, but it can not be
developed in the theory of superconductors. It explains general laws such as the
emergence of the energy gap, the behavior of specific heat capacity, the flux
quantization, etc., but it can not predict the main parameters of the individual
superconductors: their critical temperatures and critical magnetic fields. More precisely,
in the B-BCS-theory, the expression for the critical temperature of superconductor
obtains an exponential form which exponential factor is impossible to measure directly
and this formula is of no practical interest.

Recent studies of the isotopic substitution showed that zero-point oscillations of the
ions in the metal lattice are not harmonic. Consequently the isotopic substitution affects
the interatomic distances in a lattice, and as the result, they directly change the Fermi
energy of a metal [50].

Therefore, the assumption developed in the middle of the last century, that the electron-
phonon interaction is the only possible mechanism of superconductivity was proved to be
wrong. The direct effect of isotopic substitution on the Fermi energy gives a possibility
to consider the superconductivity without the phonon mechanism.

Furthermore, a closer look at the problem reveals that the B-BCS-theory describes the
mechanism of electron pairing, but in this theory there is no mechanism for combining
pairs in the single super-ensemble. The necessary condition for the existence of
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superconductivity is formation of a unique ensemble of particles. By this mechanism, a
very small amount of electrons are combined in super-ensemble, on the level 10 in minus
fifth power from the full number of free electrons. This fact also can not be understood
in the framework of the B-BCS theory.

An operation of the mechanism of electron pairing and turning them into boson pairs
is a necessary but not sufficient condition for the existence of a superconducting state.
Obtained pairs are not identical at any such mechanism. They differ because of their
uncorrelated zero-point oscillations and they can not form the condensate at that.

At very low temperatures, that allow superfluidity in helium and superconductivity in
metals, all movements of particles are stopped except for their zero-point oscillations.
Therefore, as an alternative, we should consider the interaction of super-particles
through electro-magnetic fields of zero-point oscillations. This approach was proved to
be fruitful. At the consideration of super-phenomena as consequences of the zero-point
oscillations ordering, one can construct theoretical mechanisms enabling to give
estimations for the critical parameters of these phenomena which are in satisfactory
agreement with measurements.

As result, one can see that as the critical temperatures of (type-I) superconductors are
equal to about 10−6 from the Fermi temperature for superconducting metal, which is
consistent with data of measurements. At this the destruction of superconductivity by
application of critical magnetic field occurs when the field destroys the coherence of zero-
point oscillations of electron pairs. This is in good agreement with measurements also.

A such-like mechanism works in superfluid liquid helium. The problem of the
interaction of zero-point oscillations of the electronic shells of neutral atoms in the
s-state, was considered yet before the World War II by F. London. He has shown that this
interaction is responsible for the liquefaction of helium. The closer analysis of
interactions of zero-point oscillations for helium atomic shells shows that at first at the
temperature of about 4K only, one of the oscillations mode becomes ordered. As a result,
the forces of attraction appear between atoms which are need for helium liquefaction. To
create a single quantum ensemble, it is necessary to reach the complete ordering of
atomic oscillations. At the complete ordering of oscillations at about 2K, the additional
energy of the mutual attraction appears and the system of helium-4 atoms transits in
superfluid state. To form the superfluid quantum ensemble in Helium-3, not only the
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zero-point oscillations should be ordered, but the magnetic moments of the nuclei should
be ordered too. For this reason, it is necessary to lower the temperature below 0.001K.
This is also in agreement with experiment.

Thus it is possible to show that both related super-phenomena, superconductivity and
superfluidity, are based on the single physical mechanism: the ordering of zero-point
oscillations.

The roles of zero-point oscillations in formation of the superconducting state have been
previously considered in papers [37]-[39].

6.2 The Electron Pairing

J. Bardeen was first who turned his attention toward a possible link between
superconductivity and zero-point oscillations [40]. The special role of zero-point
vibrations exists due to the fact that at low temperatures all movements of electrons in
metals have been frozen except for these oscillations.

 

The lowering of electron energy at their pairing 

due to magnetic dipole-dipole interaction

Fermi-energy level for

non-interacting free electrons

The lowering of electron energy due to 

the ordering of their zero-point oscillations

The condensate of

ordered zero-point

oscillations

Figure 6.1 The schematic representation of the energy levels of conducting electrons

in a superconducting metal.

Superconducting condensate formation requires two mechanisms: first, the electrons
must be united in boson pairs, and then the zero-point fluctuations must be ordered (see
Figure 6.1).
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The energetically favorable pairing of electrons in the electron gas should occur above
the critical temperature.

Possibly, the pairing of electrons can occur due to the magnetic dipole-dipole
interaction.

For the magnetic dipole-dipole interaction, to merge two electrons into the singlet pair
at the temperature of about 10K, the distance between these particles must be small
enough:

r < (µ2
B/kTc)

1/3 ≈ aB , (6.1)

where aB = ~2

mee2
is the Bohr radius.

That is, two collectivized electrons must be localized in one lattice site volume. It is
agreed that the superconductivity can occur only in metals with two collectivized electrons
per atom, and cannot exist in the monovalent alkali and noble metals.

It is easy to see that the presence of magnetic moments on ion sites should interfere
with the magnetic combination of electrons. This is confirmed by the experimental fact:
as there are no strong magnetic substances among superconductors, so adding of iron,
for example, to traditional superconducting alloys always leads to a lower critical
temperature.

On the other hand, this magnetic coupling should not be destroyed at the critical
temperature. The energy of interaction between two electrons, located near one lattice
site, can be much greater. This is confirmed by experiments showing that throughout the
period of the magnetic flux quantization, there is no change at the transition through the
critical temperature of superconductor [41], [42].

The outcomes of these experiments are evidence that the existence of the mechanism
of electron pairing is a necessary but not a sufficient condition for the existence of
superconductivity.

The magnetic mechanism of electronic pairing proposed above can be seen as an
assumption which is consistent with the measurement data and therefore needs a more
detailed theoretic consideration and further refinement.

On the other hand, this issue is not very important in the grander scheme, because the
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nature of the mechanism that causes electron pairing is not of a significant importance.
Instead, it is important that there is a mechanism which converts the electronic gas into an
ensemble of charged bosons with zero spin in the considered temperature range (as well
as in a some range of temperatures above Tc).

If the temperature is not low enough, the electronic pairs still exist but their zero-point
oscillations are disordered. Upon reaching the Tc, the interaction between zero-point
oscillations should cause their ordering and therefore a superconducting state is created.

6.3 The Interaction of Zero-Point Oscillations

Figure 6.2 Two ions placed on the distance L and centers of their electronic clouds.

The principal condition for the superconducting state formation is the ordering of
zero-point oscillations. It is realized because the paired electrons obeying Bose-Einstein
statistics attract each other.

The origin of this attraction can be explained as follows.

Let two ion A and B be located on the z axis at the distance L from each other. Two
collectivized electrons create clouds with centers at points 1 and 2 in the vicinity of each
ions (Figure 6.2). Let r1 be the radius-vector of the center of the first electronic cloud
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relative to the ion A and r2 is the radius-vector of the second electron relative to the ion
B.

Following the Born-Oppenheimer approximation, slowly oscillating ions are assumed
fixed. Let the temperature be low enough (T → 0), so only zero-point fluctuations of
electrons would be taken into consideration.

In this case, the Hamiltonian of the system can be written as:

H = H0 +H ′

H0 = − ~2

4me

(
∇2

1 +∇2
2

)
− 4e2

r1
− 4e2

r2

H ′ = 4e2

L + 4e2

r12
− 4e2

r1B
− 4e2

r2A

(6.2)

Eigenfunctions of the unperturbed Hamiltonian describes two ions surrounded by
electronic clouds without interactions between them. Due to the fact that the distance
between the ions is large compared with the size of the electron clouds L � r , the
additional term H ′ characterizing the interaction can be regarded as a perturbation.

If we are interested in the leading term of the interaction energy for L, the function H ′

can be expanded in a series in powers of 1/L and we can write the first term:

H ′ = 4e2

L

{
1 +

[
1 + 2(z2−z1)

L + (x2−x1)2+(y2−y1)2+(z2−z1)2

L2

]−1/2

−
(

1− 2z1
L +

r2
1

L2

)−1/2

−
(

1 + 2z2
L +

r2
2

L2

)−1/2
}
.

(6.3)

After combining the terms in this expression, we get:

H ′ ≈ 4e2

L3
(x1x2 + y1y2 − 2z1z2) . (6.4)

This expression describes the interaction of two dipoles d1 and d2, which are formed
by fixed ions and electronic clouds of the corresponding instantaneous configuration.

Let us determine the displacements of electrons which lead to an attraction in the
system .

Let zero-point fluctuations of the dipole moments formed by ions with their electronic
clouds occur with the frequency Ω0, whereas each dipole moment can be decomposed
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into three orthogonal projection dx = ex, dy = ey and dz = ez, and fluctuations of the
second clouds are shifted in phase on ϕx, ϕy and ϕz relative to fluctuations of the first.

As can be seen from Eq.(6.4), the interaction of z-components is advantageous at in-
phase zero-point oscillations of clouds, i.e., when ϕz = 2π.

Since the interaction of oscillating electric dipoles is due to the occurrence of oscillating
electric field generated by them, the phase shift on 2π means that attracting dipoles are
placed along the z-axis on the wavelength Λ0:

Lz = Λ0 =
c

2πΩ0
. (6.5)

As follows from (6.4), the attraction of dipoles at the interaction of the x and
y-component will occur if these oscillations are in antiphase, i.e. if the dipoles are
separated along these axes on the distance equals to half of the wavelength:

Lx,y =
Λ0

2
=

c

4πΩ0
. (6.6)

In this case

H ′ = −4e2

(
x1x2

L3
x

+
y1y2

L3
y

+ 2
z1z2

L3
z

)
. (6.7)

Assuming that the electronic clouds have isotropic oscillations with amplitude a0 for
each axis

x1 = x2 = y1 = y2 = z1 = z2 = a0 (6.8)

we obtain

H ′ = 576π3 e
2

c3
Ω3

0a
2
0. (6.9)

6.4 The Zero-Point Oscillations Amplitude

The principal condition for the superconducting state formation, that is the ordering of
zero-point oscillations, is realized due to the fact that the paired electrons, which obey
Bose-Einstein statistics, interact with each other.

Science Publishing Group 71



Superconductivity and Superfluidity

At they interact, their amplitudes, frequencies and phases of zero-point oscillations
become ordered.

Let an electron gas has density ne and its Fermi-energy be EF . Each electron of this
gas can be considered as fixed inside a cell with linear dimension λF :1

λ3
F =

1

ne
(6.10)

which corresponds to the de Broglie wavelength:

λF =
2π~
pF

. (6.11)

Having taken into account (6.11), the Fermi energy of the electron gas can be written
as

EF =
p2
F

2me
= 2π2 e

2aB
λ2
F

. (6.12)

However, a free electron interacts with the ion at its zero-point oscillations. If we
consider the ions system as a positive background uniformly spread over the cells, the
electron inside one cell has the potential energy:

Ep ' −
e2

λF
. (6.13)

As zero-point oscillations of the electron pair are quantized by definition, their
frequency and amplitude are related

mea
2
0Ω0 '

~
2
. (6.14)

Therefore, the kinetic energy of electron undergoing zero-point oscillations in a limited
region of space, can be written as:

Ek '
~2

2mea2
0

. (6.15)

1 Of course, the electrons are quantum particles and their fixation cannot be considered too literally. Due to
the Coulomb forces of ions, it is more favorable for collectivized electrons to be placed near the ions for the
shielding of ions fields. At the same time, collectivized electrons are spread over whole metal. It is wrong to
think that a particular electron is fixed inside a cell near to a particular ion. But the spread of the electrons
does not play a fundamental importance for our further consideration, since there are two electrons near the
node of the lattice in the divalent metal at any given time. They can be considered as located inside the cell
as averaged.
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In accordance with the virial theorem [45], if a particle executes a finite motion, its
potential energy Ep should be associated with its kinetic energy Ek through the simple
relation |Ep| = 2Ek.

In this regard, we find that the amplitude of the zero-point oscillations of an electron in
a cell is:

a0 '
√

2λFaB . (6.16)

6.5 The Condensation Temperature

Hence the interaction energy, which unites particles into the condensate of ordered
zero-point oscillations

∆0 ≡ H ′ = 18π3α3 e
2aB
λ2
F

, (6.17)

where α = 1
137 is the fine structure constant.

Comparing this association energy with the Fermi energy (6.12), we obtain

∆0

EF
= 9πα3 ' 1.1 · 10−5. (6.18)

Assuming that the critical temperature below which the possible existence of such
condensate is approximately equal

Tc '
1

2

∆0

k
(6.19)

(the coefficient approximately equal to 1/2 corresponds to the experimental data,
discussed below in the section (7.6)).

After substituting obtained parameters, we have

Tc ' 5.5 · 10−6TF (6.20)

The experimentally measured ratios Tc
TF

for I-type superconductors are given in
Table 7.1 and in Figure 7.1.

The straight line on this figure is obtained from Eq.(6.20), which as seen defines an
upper limit of critical temperatures of I-type superconductors.
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The Condensate of Zero-Point
Oscillations and Type-I
Superconductors

7.1 The Critical Temperature of Type-I Superconductors

In order to compare the critical temperature of the condensate of zero-point
oscillations with measured critical temperatures of superconductors, at first we should
make an estimation on the Fermi energies of superconductors. For this we use the
experimental data for the Sommerfeld’s constant through which the Fermi energy can be
expressed:

γ =
π2k2ne

4EF
=

1

2
·
(π

3

)2/3
(
k

~

)2

men
1/3
e (7.1)

So on the basis of Eqs.(6.12) and (7.1), we get:

kTF (γ) =
p2
F (γ)

2me
'
(

12

k2

)2( ~2

2me

)3

γ2. (7.2)

On base of these calculations we obtain possibility to relate directly the critical
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temperature of a superconductor with the experimentally measurable parameter: with its
electronic specific heat.

Taking into account Eq.(6.20), we have:

∆0 ' Θγ2, (7.3)

where the constant

Θ ' 31
π2

k

[
α~2

kme

]3

' 6.65 · 10−22K
4cm6

erg
. (7.4)

Table 7.1 The comparison of the calculated values of superconductors critical temperatures

with measured Fermi temperatures.

superconductor Tc,K TF ,K Eq(7.2) Tc
TF

Cd 0.51 1.81 · 105 2.86 · 10−6

Zn 0.85 3.30 · 105 2.58 · 10−6

Ga 1.09 1.65 · 105 6.65 · 10−6

Tl 2.39 4.67 · 105 5.09 · 10−6

In 3.41 7.22 · 105 4.72 · 10−6

Sn 3.72 7.33 · 105 5.08 · 10−6

Hg 4.15 1.05 · 106 3.96 · 10−6

Pb 7.19 1.85 · 106 3.90 · 10−6
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Table 7.2 The comparison of the calculated values of superconductors critical temperatures

with measurement data.

superconductors Tc(measur), K γ, erg
cm3K2 Tc(calc), K Eq.(7.3) Tc(calc)

Tc(meas)

Cd 0.517 532 0.77 1.49

Zn 0.85 718 1.41 1.65

Ga 1.09 508 0.70 0.65

Tl 2.39 855 1.99 0.84

In 3.41 1062 3.08 0.90

Sn 3.72 1070 3.12 0.84

Hg 4.15 1280 4.48 1.07

Pb 7.19 1699 7.88 1.09

5.0 5.5 6.0 6.5
-0.5

0.0

0.5

1.0

Cd

Zn

Ga

Tl

InSn
Hg

Pb
log T c

log TF

Figure 7.1 The comparison of critical temperatures Tc of type-I superconductors with

their Fermi temperatures TF . The straight line is obtained from Eq.(6.20).
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The comparison of the calculated parameters and measured data ([22], [32]) is given in
Table 7.1-7.2 and in Figure 7.1 and 8.1.

7.2 The Relation of Critical Parameters of Type-I
Superconductors

The phenomenon of condensation of zero-point oscillations in the electron gas has its
characteristic features.

There are several ways of destroying the zero-point oscillations condensate in electron
gas:

Firstly, it can be evaporated by heating. In this case, evaporation of the condensate
should possess the properties of an order-disorder transition.

Secondly, due to the fact that the oscillating electrons carry electric charge, the
condensate can be destroyed by the application of a sufficiently strong magnetic field.

For this reason, the critical temperature and critical magnetic field of the condensate
will be interconnected.

This interconnection should manifest itself through the relationship of the critical
temperature and critical field of the superconductors, if superconductivity occurs as
result of an ordering of zero-point fluctuations.

Let us assume that at a given temperature T < Tc the system of vibrational levels of
conducting electrons consists of only two levels:

• firstly, basic level which is characterized by an anti-phase oscillations of the
electron pairs at the distance Λ0/2, and

• secondly, an excited level characterized by in-phase oscillation of the pairs.

Let the population of the basic level be N0 particles and the excited level has N1

particles.
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Two electron pairs at an in-phase oscillations have a high energy of interaction and
therefore cannot form the condensate. The condensate can be formed only by the particles
that make up the difference between the populations of levelsN0−N1. In a dimensionless
form, this difference defines the order parameter:

Ψ =
N0

N0 +N1
− N1

N0 +N1
. (7.5)

In the theory of superconductivity, by definition, the order parameter is determined by
the value of the energy gap

Ψ = ∆T /∆0. (7.6)

When taking a counting of energy from the level ε0, we obtain

∆T

∆0
=
N0 −N1

N0 +N1
' e2∆T /kT − 1

e2∆T /kT + 1
= th(2∆T /kT ). (7.7)

Passing to dimensionless variables δ ≡ ∆T

∆0
, t ≡ kT

kTc
and β ≡ 2∆0

kTc
we have

δ =
eβδ/t − 1

eβδ/t + 1
= th(βδ/t). (7.8)

This equation describes the temperature dependence of the energy gap in the spectrum
of zero-point oscillations. It is similar to other equations describing other physical
phenomena, that are also characterized by the existence of the temperature dependence
of order parameters [43], [44]. For example, this dependence is similar to temperature
dependencies of the concentration of the superfluid component in liquid helium or the
spontaneous magnetization of ferromagnetic materials. This equation is the same for all
order-disorder transitions (the phase transitions of 2nd-type in the Landau classification).

The solution of this equation, obtained by the iteration method, is shown in Figure 7.2.
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Figure 7.2 The temperature dependence of the value of the gap in the energetic

spectrum of zero-point oscillations calculated on Eq.(7.8).

This decision is in a agreement with the known transcendental equation of the BCS,
which was obtained by the integration of the phonon spectrum, and is in a satisfactory
agreement with the measurement data.

After numerical integrating we can obtain the averaging value of the gap:

〈∆〉 = ∆0

∫ 1

0

δdt = 0.852 ∆0 . (7.9)

To convert the condensate into the normal state, we must raise half of its particles into
the excited state (according to Eq.(7.7), the gap collapses under this condition). To do
this, taking into account Eq.(7.9), the unit volume of condensate should have the energy:

ET '
1

2
n0〈∆0〉 ≈

0.85

2

( me

2π2α~2

)3/2

∆
5/2
0 , (7.10)

On the other hand, we can obtain the normal state of an electrically charged condensate
when applying a magnetic field of critical value Hc with the density of energy:

EH =
H2
c

8π
. (7.11)
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As a result, we acquire the condition:

1

2
n0〈∆0〉 =

H2
c

8π
. (7.12)

This creates a relation of the critical temperature to the critical magnetic field of the
zero-point oscillations condensate of the charged bosons.

1 2 3 4 5
1

2

3

4

5

Cd

Zn Ga

Al

Tl

InSn

Hg

Pb

log E
T

log E
H

Figure 7.3 The comparison of the critical energy densities ET (Eq.(7.10)) and EH
(Eq.(7.11)) for the type-I superconductors.

The comparison of the critical energy densities ET and EH for type-I superconductors
are shown in Figure 7.3.

As shown, the obtained agreement between the energies ET (Eq.(7.10)) and EH
(Eq.(7.11)) is quite satisfactory for type-I superconductors [32], [22]. A similar
comparison for type-II superconductors shows results that differ by a factor two
approximately. The reason for this will be considered below. The correction of this
calculation, has not apparently made sense here. The purpose of these calculations was
to show that the description of superconductivity as the effect of the condensation of
ordered zero-point oscillations is in accordance with the available experimental data.
This goal is considered reached in the simple case of type-I superconductors.
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7.3 The Critical Magnetic Field of Superconductors

The direct influence of the external magnetic field of the critical value applied to the
electron system is too weak to disrupt the dipole-dipole interaction of two paired
electrons:

µBHc � kTc. (7.13)

In order to violate the superconductivity, the ordering of the electron zero-point
oscillations must be destroyed. For this the presence of relatively weak magnetic field is
required.

At combing of Eqs.(7.12), (7.10) and (6.16), we can express the gap through the critical
magnetic field and the magnitude of the oscillating dipole moment:

∆0 ≈
1

2
e a0 Hc. (7.14)

The properties of the zero-point oscillations of the electrons should not be dependent
on the characteristics of the mechanism of association and also on the condition of the
existence of electron pairs. Therefore, we should expect that this equation would also
be valid for type-I superconductors, as well as for II-type superconductors (for II-type
superconductor Hc = Hc1 is the first critical field)

An agreement with this condition is illustrated on the Figure 7.4.
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Figure 7.4 The comparison of the calculated energy of superconducting pairs in the

critical magnetic field with the value of the superconducting gap. Here, the following key

applies: filled triangles - type-II superconductors, empty triangles - type-I

superconductors. On vertical axis - logarithm of the product of the calculated value of

the oscillating dipole moment of an electron pair on the critical magnetic field is plotted.

On horizontal axis - the value of the gap is shown.

7.4 The Density of Superconducting Carriers

Let us consider the process of heating the electron gas in metal. When heating, the
electrons from levels slightly below the Fermi-energy are raised to higher levels. As a
result, the levels closest to the Fermi level, from which at low temperature electrons were
forming bosons, become vacant.

At critical temperature Tc, all electrons from the levels of energy bands from EF −∆ to
EF move to higher levels (and the gap collapses). At this temperature superconductivity
is therefore destroyed completely.
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This band of energy can be filled by N∆ particles:

N∆ = 2

∫ EF
EF−∆

F (E)D(E)dE . (7.15)

Where F (E) = 1

e
E−µ
τ +1

is the Fermi-Dirac function and D(E) is number of states per

an unit energy interval, a deuce front of the integral arises from the fact that there are two
electron at each energy level.

To find the density of states D(E), one needs to find the difference in energy of the
system at T = 0 and finite temperature:

∆E =

∫ ∞
0

F (E)ED(E)dE −
∫ EF

0

ED(E)dE . (7.16)

For the calculation of the density of states D(E), we must note that two electrons can
be placed on each level. Thus, from the expression of the Fermi-energy Eq.(6.12)

we obtain
D(EF ) =

1

2
· dne
dEF

=
3ne
4EF

=
3γ

2k2π2
, (7.17)

where

γ =
π2k2ne

4EF
=

1

2
·
(π

3

)3/2
(
k

~

)2

men
1/3
e (7.18)

is the Sommerfeld constant 1.

Using similar arguments, we can calculate the number of electrons, which populate the
levels in the range from EF −∆ to EF . For an unit volume of material, Eq.(7.15) can be
rewritten as:

n∆ = 2kT ·D(EF )

∫ 0

− ∆0
kTc

dx

(ex + 1)
. (7.19)

By supposing that for superconductors ∆0

kTc
= 1.86, as a result of numerical integration

we obtain ∫ 0

− ∆0
kTc

dx

(ex + 1)
= [x− ln(ex + 1)]

0
−1.86 ≈ 1.22. (7.20)

1 It should be noted that because on each level two electrons can be placed, the expression for the Sommerfeld
constant Eq.(7.18) contains the additional factor 1/2 in comparison with the usual formula in literature [44].
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Thus, the density of electrons, which throw up above the Fermi level in a metal at
temperature T = Tc is

ne(Tc) ≈ 2.44

(
3γ

k2π2

)
kTc. (7.21)

Where the Sommerfeld constant γ is related to the volume unit of the metal.

From Eq.(6.6) it follows

L0 '
λF
πα

(7.22)

and this forms the ratio of the condensate particle density to the Fermi gas density:

n0

ne
=
λ3
F

L3
0

' (πα)
3 ' 10−5. (7.23)

When using these equations, we can find a linear dimension of localization for an
electron pair:

L0 =
Λ0

2
' 1

πα(ne)1/3
. (7.24)

or, taking into account Eq.(6.16), we can obtain the relation between the density of
particles in the condensate and the value of the energy gap:

∆0 ' 2π2α
~2

me
n

2/3
0 (7.25)

or

n0 =
1

L3
0

=
( me

2π2α~2
∆0

)3/2

. (7.26)

It should be noted that the obtained ratios for the zero-point oscillations condensate
(of bose-particles) differ from the corresponding expressions for the bose-condensate of
particles, which can be obtained in many courses (see eg [43]). The expressions for the
ordered condensate of zero-point oscillations have an additional coefficient α on the right
side of Eq.(7.25).

The de Broglie wavelengths of Fermi electrons expressed through the Sommerfelds
constant

λF =
2π~
pF (γ)

' π

3
· k

2me

~2γ
(7.27)

are shown in Table 7.4.
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In accordance with Eq.(7.22), which was obtained at the zero-point oscillations
consideration, the ratio λF

Λ0
' 2.3 · 10−2.

In connection with this ratio, the calculated ratio of the zero-point oscillations
condensate density to the density of fermions in accordance with Eq.(7.23) should be
near to 10−5.

It can be therefore be seen, that calculated estimations of the condensate parameters are
in satisfactory agreement with experimental data of superconductors.

Table 7.3 The ratios λF
Λ0

and n0
ne

for type-I superconductors.

superconductor λF , cm Eq(7.27) Λ0,cm Eq(6.6) λF
Λ0

n0
ne

=
(
λF
Λ0

)3

Cd 3.1 · 10−8 1.18 · 10−6 2.6 · 10−2 1.8 · 10−5

Zn 2.3 · 10−8 0.92 · 10−6 2.5 · 10−2 1.5 · 10−5

Ga 3.2 · 10−8 0.81 · 10−6 3.9 · 10−2 6.3 · 10−5

Tl 1.9 · 10−8 0.55 · 10−6 3.4 · 10−2 4.3 · 10−5

In 1.5 · 10−8 0.46 · 10−6 3.2 · 10−2 3.8 · 10−5

Sn 1.5 · 10−8 0.44 · 10−6 3.4 · 10−2 4.3 · 10−5

Hg 1.3 · 10−8 0.42 · 10−6 3.1 · 10−2 2.9 · 10−5

Pb 1.0 · 10−8 0.32 · 10−6 3.1 · 10−2 2.9 · 10−5
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Table 7.4 The comparison of the superconducting carriers density at T = 0 with the density of

thermally activated electrons at T = Tc.

superconductor n0 ne(Tc) 2n0/ne(Tc)

Cd 6.11 · 1017 1.48 · 1018 0.83

Zn 1.29 · 1018 3.28 · 1018 0.78

Ga 1.85 · 1018 2.96 · 1018 1.25

Al 2.09 · 1018 8.53 · 1018 0.49

Tl 6.03 · 1018 1.09 · 1019 1.10

In 1.03 · 1019 1.94 · 1019 1.06

Sn 1.18 · 1019 2.14 · 1019 1.10

Hg 1.39 · 1019 2.86 · 1019 0.97

Pb 3.17 · 1019 6.58 · 1019 0.96

Based on these calculations, it is interesting to compare the density of
superconducting carriers n0 at T = 0, which is described by Eq.(7.26), with the density
of normal carriers ne(Tc), which are evaporated on levels above EF at T = Tc and are
described by Eq.(7.21).
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Figure 7.5 The comparison of the number of superconducting carriers at T = 0 with

the number of thermally activated electrons at T = Tc.

This comparison is shown in Table 7.4 and Figure 7.5. (Data has been taken from the
tables [32], [22]).

From the data described above, we can obtain the condition of destruction of
superconductivity, after heating for superconductors of type-I, as written in the equation:

ne(Tc) ' 2n0 (7.28)

7.5 The Sound Velocity of the Zero-Point Oscillations
Condensate

The wavelength of zero-point oscillations Λ0 in this model is an analogue of the Pippard
coherence length in the BCS. As usually accepted [22], the coherence length ξ = ~vF

4∆0
.
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The ratio of these lengths, taking into account Eq.(6.20), is simply the constant:

Λ0

ξ
≈ 8π2α2 ≈ ·10−3. (7.29)

The attractive forces arising between the dipoles located at a distance Λ0

2 from each
other and vibrating in opposite phase, create pressure in the system:

P ' d∆0

dV
' d2

Ω

L6
0

. (7.30)

In this regard, sound into this condensation should propagate with the velocity:

cs '
√

1

2me

dP

dn0
. (7.31)

After the appropriate substitutions, the speed of sound in the condensate can be
expressed through the Fermi velocity of electron gas

cs '
√

2π2α3vF ' 10−2vF . (7.32)

The condensate particles moving with velocity cS have the kinetic energy:

2mec
2
s ' ∆0. (7.33)

Therefore, by either heating the condensate to the critical temperature when each of
its volume obtains the energy E ≈ n0∆0, or initiating the current of its particles with
a velocity exceeding cS , can achieve the destruction of the condensate. (Because the
condensate of charged particles oscillations is considered, destroying its coherence can
be also obtained at the application of a sufficiently strong magnetic field. See below.)

7.6 The Relationship ∆0/kTc

From Eq.(7.28) and taking into account Eqs.(7.3),(7.21) and (7.26), which were
obtained for condensate, we have:

∆0

kTc
' 1.86. (7.34)
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This estimation of the relationship ∆0/kTc obtained for condensate has a satisfactory
agreement with the measured data [32].2

Table 7.5 The value of ratio ∆0/kTc obtained experimentally for type-I superconductors.

superconductor Tc,K ∆0,mev ∆0
kTc

Cd 0.51 0.072 1.64

Zn 0.85 0.13 1.77

Ga 1.09 0.169 1.80

Tl 2.39 0.369 1.79

In 3.41 0.541 1.84

Sn 3.72 0.593 1.85

Hg 4.15 0.824 2.29

Pb 7.19 1.38 2.22

2 In the BCS-theory ∆0
kTc
' 1.76.
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Another Superconductors

8.1 About Type-II Superconductors

In the case of type-II superconductors the situation is more complicated.

In this case, measurements show that these metals have an electronic specific heat that
has an order of value greater than those calculated on the base of free electron gas model.

The peculiarity of these metals is associated with the specific structure of their ions.
They are transition metals with unfilled inner d-shell (see Table 8.1).

It can be assumed that the increase in the electronic specific heat of these metals should
be associated with a characteristic interaction of free electrons with the electrons of the
unfilled d-shell.

Since the heat capacity of the ionic lattice of metals is negligible at low temperatures,
only the electronic subsystem is thermally active.



Superconductivity and Superfluidity

Table 8.1 The external electron shells of elementary type-II superconductors.

superconductors electron shells

T i 3d2 4s2

V 3d3 4s2

Zr 4d2 5s2

Nb 4d3 5s2

Mo 4d4 5s2

Tc 4d5 5s2

Ru 4d6 5s2

La 5d1 6s2

Hf 5d2 6s2

Ta 5d3 6s2

W 5d4 6s2

Re 5d5 6s2

Os 5d6 6s2

Ir 5d7 6s2

At T = 0 the superconducting careers populates the energetic level EF −∆0. During
the destruction of superconductivity through heating, an each heated career increases its
thermal vibration. If the effective velocity of vibration is vt, its kinetic energy:

Ek =
mv2

t

2
' ∆0 (8.1)

Only a fraction of the heat energy transferred to the metal is consumed in order to
increase the kinetic energy of the electron gas in the transition metals.

Another part of the energy will be spent on the magnetic interaction of a moving
electron.
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At contact with the d-shell electron, a freely moving electron induces onto it the
magnetic field of the order of value:

H ≈ e

r2
c

v

c
. (8.2)

The magnetic moment of d-electron is approximately equal to the Bohr magneton.
Therefore the energy of the magnetic interaction between a moving electron of
conductivity and a d-electron is approximately equal to:

Eµ ≈
e2

2rc

v

c
. (8.3)

This energy is not connected with the process of destruction of superconductivity.

Whereas, in metals with a filled d-shell (type-I superconductors), the whole heating
energy increases the kinetic energy of the conductivity electrons and only a small part of
the heating energy is spent on it in transition metals:

Ek
Eµ + Ek

' mvt
h
aB . (8.4)

So approximately
Ek

Eµ + Ek
' aB
L0
. (8.5)

Therefore, whereas the dependence of the gap in type-I superconductors from the heat
capacity is defined by Eq.(7.3), it is necessary to take into account the relation Eq.(8.5) in
type-II superconductors for the determination of this gap dependence. As a result of this
estimation, we can obtain:

∆0 ' Θγ2

(
Ek

Eµ + Ek

)
' Θγ2

(
aB
L0

)
1

2
, (8.6)

where 1/2 is the fitting parameter.

Science Publishing Group 93



Superconductivity and Superfluidity

-2 -1 0 1 2
-2

-1

0

1

2

log Tc(calc)

log Tc(measured)
W

Ir

Hf

Ti
Ru

Zr

Os

Mo
Th

Re

Ta

La

V

Nb

Cd

Zn

Ga

Al

Tl

InSn
Hg

Pb

Figure 8.1 The comparison of the calculated values of critical temperatures of

superconductors with measurement data. Circles relate to type-I superconductors,

squares show type-II superconductors. On the abscissa, the measured values of critical

temperatures are plotted, on ordinate, the calculated estimations are plotted. The

calculations of critical temperatures for type-I superconductors were made by using

Eq.(7.3) and the estimations for type-II superconductors was obtained by using Eq.(8.6).

The comparison of the results of these calculations with the measurement data
(Figure 8.1) shows that for the majority of type-II superconductors the estimation Eq.(8.6)
can be considered quite satisfactory.1

1 The lowest critical temperature was measured for Mg. It is approximately equal to 1mK. Mg-atoms in the
metallic state are given two electrons into the electron gas of conductivity. It is confirmed by the fact that the
pairing of these electrons, which manifests itself in the measured value of the flux quantum [42], is observed
above Tc. It would seem that in view of this metallic Mg-ion must have electron shell like the Ne-atom.
Therefore it is logical to expect that the critical temperature of Mg can be calculated by the formula for I-type
superconductors. But actually in order to get the value of Tc ≈ 1mK, the critical temperature of Mg should
be calculated by the formula (8.6), which is applicable to the description of metals with an unfilled inner
shell. This suggests that the ionic core of magnesium metal apparently is not as simple as the completely
filled Ne-shell.
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8.2 Alloys and High-Temperature Superconductors

In order to understand the mechanism of high temperature superconductivity, it is
important to establish whether the high-Tc ceramics are the I or II-type superconductors,
or whether they are a special class of superconductors.

In order to determine this, we need to look at the above established dependence of
critical parameters from the electronic specific heat and also consider that the specific
heat of superconductors I and II-types are differing considerably.

There are some difficulties by determining the answer this way: as we do not precisely
know the density of the electron gas in high-temperature superconductors. However, the
densities of atoms in metals do not differ too much and we can use Eq.(7.3) for the solution
of the problem of the I- and II-types superconductors distinguishing.

If parameters of type-I superconductors are inserted into this equation, we obtain quite
a satisfactory estimation of the critical temperature (as was done above, see Figure 8.1).
For the type-II superconductors’ values, this assessment gives an overestimated value due
to the fact that type-II superconductors’ specific heat has additional term associated with
the magnetization of d-electrons.

This analysis therefore, illustrates a possibility where we can divide all superconductors
into two groups, as is evident from the Figure 8.2.

It is generally assumed that we consider alloys Nb3Sn and V3Si as the type-II
superconductors. This assumption seems quite normal because they are placed in close
surroundings of Nb. Some excess of the calculated critical temperature over the
experimentally measured value for ceramics Ta2Ba2Ca2Cu3O10 can be attributed to
the measured heat capacity that may have been created by not only conductive electrons,
but also non-superconducting elements (layers) of ceramics. It is already known that it,
as well as ceramics Y Ba2Cu3O7, belongs to the type-II superconductors. However,
ceramics (LaSr)2Cu4, Bi-2212 and Tl-2201, according to this figure should be regarded
as type-I superconductors, which is unusual.
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Chapter 9

About the London Penetration
Depth

9.1 The Magnetic Energy of a Moving Electron

To avoid these incorrect results, let us consider a balance of magnetic energy in a
superconductor within magnetic field. This magnetic energy is composed of energy from
a penetrating external magnetic field and magnetic energy of moving electrons.

By using formulas [46], let us estimate the ratio of the magnetic and kinetic energy of
an electron (the charge of e and the mass me) when it moves rectilinearly with a velocity
v � c.

The density of the electromagnetic field momentum is expressed by the equation:

g =
1

4πc
[EH] (9.1)

While moving with a velocity v, the electric charge carrying the electric field with
intensity E creates a magnetic field

H =
1

c
[Ev] (9.2)
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with the density of the electromagnetic field momentum (at v � c)

g =
1

4πc2
[E[vE]] =

1

4πc2
(
vE2 −E(v ·E)

)
(9.3)

As a result, the momentum of the electromagnetic field of a moving electron

G =

∫
V

gdV =
1

4πc2

(
v

∫
V

E2 dV −
∫
V

E E v cosϑ dV

)
(9.4)

The integrals are taken over the entire space, which is occupied by particle fields, and
ϑ is the angle between the particle velocity and the radius vector of the observation point.
By calculating the last integral in the condition of the axial symmetry with respect to v, the
contributions from the components of the vector E, which is perpendicular to the velocity,
cancel each other for all pairs of elements of the space (if they located diametrically
opposite on the magnetic force line). Therefore, according to Eq.(9.4), the component of
the field which is collinear to v

E cosϑ · v
v

(9.5)

can be taken instead of the vector E. By taking this information into account, going over
to the spherical coordinates and integrating over angles, we can obtain

G =
v

4πc2

∫ ∞
r

E2 · 4πr2 dr (9.6)

If we limit the integration of the field by the Compton electron radius rC = ~
mec

, 1

then v � c, and we obtain:

G =
v

4πc2

∫ ∞
rC

E2 · 4πr2 dr =
v

c2
e2

rC
. (9.7)

In this case by taking into account Eq.(9.2), the magnetic energy of a slowly moving
electron pair is equal to:

E =
vG

2
=
v2

c2
e2

2rC
= α

mev
2

2
. (9.8)

1 Such effects as the pair generation force us to consider the radius of the “quantum electron” as approximately
equal to Compton radius [47].
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9.2 The Magnetic Energy and the London Penetration
Depth

The energy of external magnetic field into volume dv:

E =
H2

8π
dv. (9.9)

At a density of superconducting carriers ns, their magnetic energy per unit volume in
accordance with (9.8):

EH ' αns
m2v

2

2
= α

mej
2
s

2nse
, (9.10)

where js = 2ensvs is the density of a current of superconducting carriers.

Taking into account the Maxwell equation

rotH =
4π

c
js, (9.11)

the magnetic energy of moving carriers can be written as

EH '
Λ̃2

8π
(rotH)2, (9.12)

where we introduce the notation

Λ̃ =

√
α
mec2

4πnse2
=
√
αΛL. (9.13)

In this case, part of the free energy of the superconductor connected with the application
of a magnetic field is equal to:

FH =
1

8π

∫
V

(
H2 + Λ̃2(rotH)2

)
dv. (9.14)

At the minimization of the free energy, after some simple transformations we obtain

H + Λ̃2rotrotH = 0, (9.15)

thus Λ̃ is the depth of magnetic field penetration into the superconductor.
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In view of Eq.(7.26) from Eq.(9.13) we can estimate the values of London penetration
depth (see Table 9.2). The consent of the obtained values with the measurement data can
be considered quite satisfactory.

Table 9.1 Corrected values of London penetration depth.

superconductors λL,10−6cm measured [23] Λ̃,10−6cm calculated Eq.(9.13) Λ̃/λL

Tl 9.2 11.0 1.2

In 6.4 8.4 1.3

Sn 5.1 7.9 1.5

Hg 4.2 7.2 1.7

Pb 3.9 4.8 1.2

The resulting refinement may be important for estimates within the frame of
Ginzburg-Landau theory, where the London penetration depth is used as a comparison of
calculations and specific parameters of superconductors.
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Chapter 10

Three Words to Experimenters

The history of the Medes is obscure and incomprehensible.

Scientists divide it, however, into three periods:

The first is the period, which is absolutely unknown.

The second is one which is followed after the first.

And finally, the third period is a period which is known

to the same degree as two firsts.

A. Averchenko�The World History�

10.1 Why Creation of Room-Temperature
Superconductors are Hardly Probably

The understanding of the mechanism of the superconducting state should open a way
towards finding a solution to the technological problem. This problem was just a dream
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in the last century: the dream to create a superconductor that would be easily produced
(in the sense of ductility) and had high critical temperature.

In order to move towards achieving this goal, it is important firstly to understand the
mechanism that limits the critical properties of superconductors.

Let us consider a superconductor with a large limiting current. The length of their
localisation determines the limiting momentum of superconducting carriers:

pc '
2π~
L0

. (10.1)

Therefore, by using Eq.(7.33), we can compare the critical velocity of superconducting
carriers with the sound velocity:

vc =
pc

2me
' cs (10.2)

and both these velocities are about a hundred times smaller than the Fermi velocity.

The sound velocity in the crystal lattice of metal vs, in accordance with the Bohm-
Staver relation [52], has approximately the same value:

vs '
kTD
EF

vF ' 10−2vF . (10.3)

This therefore, makes it possible to consider superconductivity being destroyed as a
superconducting carrier overcomes the sound barrier. That is, if they moved without
friction at a speed that was less than that of sound, after it gained speed and the speed of
sound was surpassed, it then acquire a mechanism of friction.

Therefore, it is conceivable that if the speed of sound in the metal lattice vs < cs, then
it would create a restriction on the limiting current in superconductor.

If this is correct, then superconductors with high critical parameters should have not
only a high Fermi energy of their electron gas, but also a high speed of sound in their
lattice.

It is in agreement with the fact that ceramics have higher elastic moduli compared to
metals and alloys, and also posses much higher critical temperatures (Figure 10.1).
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Figure 10.1 The schematic representation of the dependence of critical temperature

on the speed of sound in superconductors. On the ordinate, the logarithm of the

superconductor’s critical temperature is shown. On the abscissa, the logarithm of the

square of the speed of sound is shown (for Sn and Pb - the transverse velocity of sound is

shown, because it is smaller). The speed of sound in a film was used for yttrium-123

ceramics. The dashed line shows the value of the transverse velocity of sound in

sapphire, as some estimation of the limit of its value. It can be seen that this estimation

leads to the restriction on the critical temperature in the range about 0oC - the

dot-dashed line.

The dependence of the critical temperature on the square of the speed of sound [48] is
illustrated in Figure 10.1.

This figure, which can be viewed only as a rough estimation due to the lack of necessary
experimental data, shows that the elastic modulus of ceramics with a critical temperature
close to the room temperature, should be close to the elastic modulus of sapphire, which
is very difficult to achieve.

In addition, such ceramics would be deprived of yet another important quality - their
adaptability. Indeed, in order to obtain a thin wire, we require a plastic superconductor.
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A solution of this problem would be to find a material that possesses an acceptably
high critical temperature (above 80K) and also experiences a phase transition at an even
higher temperature of heat treatment. It would be possible to make a thin wire from a
superconductor near the point of phase transition, as the elastic modules are typically not
usually very strong at this stage.

10.2 Magnetic Electron Pairing

This considered formation of mechanism for the superconducting state provides a
possibility of obtaining the estimations of the critical parameters of superconductors,
which in most cases is in satisfactory agreement with measured data. For some
superconductors, this agreement is stronger, and for other, such as Ir, Al, V (see
Figure 8.1), it is expedient to carry out further theoretical and experimental studies due
to causes of deviations.

The mechanism of magnetic electron pairing is also of fundamental interest in order to
further clarify this.

As was found earlier, in the cylinders made from certain superconducting metals
(Al[41] and Mg[42]), the observed magnetic flux quantization has exactly the same
period above Tc and that below Tc. The authors of these studies attributed this to the
influence of a special effect. It seems more natural to think that the stability of the period
is a result of the pairing of electrons due to magnetic dipole-dipole interaction continuing
to exist at temperatures above Tc, despite the disappearance of the material’s
superconducting properties. At this temperature the coherence of the zero-point
fluctuations is destroyed, and with it so is the superconductivity.

The pairing of electrons due to dipole-dipole interaction should be absent in the
monovalent metals. In these metals, the conduction electrons are localized in the lattice
at very large distances from each other.

It is therefore interesting to compare the period of quantization in the two cases. In a
thin cylinder made of a superconductor, such as Mg, above Tc the quantization period is
equal to 2π~c

2e . In the same cylinder of a noble metal (such as gold), the sampling period
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should be twice as large.

10.3 The Effect of Isotopic Substitution on the
Condensation of Zero-Point Oscillations

The attention of experimentalists could be attracted to the isotope effect in
superconductors, which served as a starting point of the B-BCS theory. In the 50’s, it had
been experimentally established that there is a dependence of the critical temperature of
superconductors due to the mass of the isotope. As the effect depends on the ionic mass,
this is considered to be due to the fact that it is based on the vibrational (phonon) process.

The isotope effect for a number of I-type superconductors - Zn, Sn, In,Hg, Pb - can
be described by the relationship: √

MiTc = const, (10.4)

where Mi is the mass of the isotope, Tc is the critical temperature. The isotope effect in
other superconductors can either be described by other dependencies, or is absent
altogether.

In recent decades, however, the effects associated with the replacement of isotopes in
the metal lattice have been studied in detail. It was shown that the zero-point oscillations
of ions in the lattice of many metals are non-harmonic. Therefore, the isotopic substitution
can directly affect the lattice parameters, the density of the lattice and the density of the
electron gas in the metal, on its Fermi energy and on other properties of the electronic
subsystem.

The direct study of the effect of isotopic substitution on the lattice parameters of
superconducting metals has not been carried out.

The results of measurements made on Ge, Si, diamond and light metals, such as Li
[50], [49] (researchers prefer to study crystals, where the isotope effects are large, and it is
easier to carry out appropriate measurements), show that there is square-root dependence
of the force constants on the isotope mass, which was required by Eq.(10.4). The same
dependence of the force constants on the mass of the isotope has been found in tin [51].
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Unfortunately, no direct experiments of the effect of isotopic substitution on the
electronic properties (such as the electronic specific heat and the Fermi energy), exist for
metals substantial for our consideration.

Let us consider what should be expected in such measurements. A convenient choice
for the superconductor is mercury, as it has many isotopes and their isotope effect has
been carefully measured back in the 50s of the last century as aforementioned.

The linear dependence of the critical temperature of a superconductor on its Fermi
energy (Eq.(6.20)) and also the existence of the isotope effect suggests the dependence of
the ion density in the crystal lattice from the mass of the isotope. Let us consider what
should be expected in such measurements.

Even then, it was found that the isotope effect is described by Eq.(10.4) in only a few
superconductors. In others, it displays different values, and therefore in a general case it
can be described by introducing of the parameter a:

Ma
i Tc = Const. (10.5)

At taking into account Eq.(6.20), we can write

Tc ∼ EF ∼ n2/3
e (10.6)

The parameter l which characterizes the ion lattice obtains an increment ∆l with an
isotope substitution:

∆l

l
= −a

2
· ∆Mi

Mi
, (10.7)

where Mi and ∆Mi are the mass of isotope and its increment.

It is generally accepted that in an accordance with the terms of the phonon mechanism,
the parameter a ≈ 1

2 for mercury. However, the analysis of experimental data [35]-[36]
(see Figure 4.3) shows that this parameter is actually closer to 1/3. Accordingly, one can
expect that the ratio of the mercury parameters is close to:(

∆l
l

)(
∆Mi

Mi

) ≈ −1

6
. (10.8)
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Chapter 11

Superfluidity as a Subsequence of
Ordering of Zero-Point
Oscillations

11.1 Zero-Point Oscillations of the Atoms and
Superfluidity

The main features of superfluidity of liquid helium became clear few decades ago [26],
[27]. L. D. Landau explains this phenomenon as the manifestation of a quantum behavior
of the macroscopic object.

However, the causes and mechanism of the formation of superfluidity are not clear till
our days. There is no explanation why the λ-transition in helium-4 occurs at about 2 K,
that is about twice less than its boiling point:

Tboiling
Tλ

≈ 1.94, (11.1)

while for helium-3, this transition is observed only at temperatures about a thousand times
smaller.



Superconductivity and Superfluidity

The related phenomenon, superconductivity, can be regarded as superfluidity of a
charged liquid. It can be quantitatively described considering it as the consequence of
ordering of zero-point oscillations of electron gas. Therefore it seems appropriate to
consider superfluidity from the same point of view [54].

Atoms in liquid helium-4 are electrically neutral, as they have no dipole moments and
do not form molecules. Yet some electromagnetic mechanism should be responsible for
phase transformations of liquid helium (as well as in other condensed substance where
phase transformations are related to the changes of energy of the same scale).

F. London has demonstrated already in the 1930’s [53], that there is an interaction
between atoms in the ground state, and this interaction is of a quantum nature. It can be
considered as a kind of the Van-der-Waals interaction. Atoms in their ground state
(T = 0) perform zero-point oscillations. F.London was considering vibrating atoms as
three-dimensional oscillating dipoles which are connected to each other by the
electromagnetic interaction. He proposed to call this interaction as the dispersion
interaction of atoms in the ground state.

11.2 The Dispersion Effect in Interaction of Atoms in the
Ground State

Following F. London [53], let us consider two spherically symmetric atoms without
non-zero average dipole moments. Let us suppose that at some time the charges of these
atoms are fluctuationally displaced from the equilibrium states:{

r1 = (x1, y1, z1)

r2 = (x2, y2, z2)
(11.2)

If atoms are located along the Z-axis at the distance L of each other, their potential
energy can be written as:

H =
e2r2

1

2a
+
e2r2

2

2a︸ ︷︷ ︸
elastic dipoles energy

+
e2

L3
(x1x2 + y1y2 − 2z1z2)︸ ︷︷ ︸

elastic dipoles interaction

.
(11.3)

where a is the atom polarizability.
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The Hamiltonian can be diagonalized by using the normal coordinates of symmetric
and antisymmetric displacements:

rs ≡


xs = 1√

2
(x1 + x2)

ys = 1√
2
(y1 + y2)

zs = 1√
2
(z1 + z2)

and

ra ≡


xa = 1√

2
(x1 − x2)

ya = 1√
2
(y1 − y2)

za = 1√
2
(z1 − z2)

This yields
x1 = 1√

2
(xs + xa)

y1 = 1√
2
(ys + ya)

z1 = 1√
2
(zs + za)

and
x2 = 1√

2
(xs − xa)

y2 = 1√
2
(ys − ya)

z2 = 1√
2
(zs − za)

As the result of this change of variables we obtain:

H = e2

2a (r2
s + r2

a) + e2

2L3 (x2
s + y3

s − 2z2
s − x2

a − y2
a + 2z2

a)

= e2

2a

[ (
1 + a

L3

)
(x2
s + y2

s) +
(
1− a

L3

)
(x2
a + y2

a)

+
(
1− 2 a

L3

)
z2
s +

(
1 + 2 a

L3

)
z2
a

]
.

(11.4)

Consequently, frequencies of oscillators depend on their orientation and they are
determined by the equations:

Ω
s
a
0x = Ω

s
a
0y = Ω0

√
1± a

L3 ≈ Ω0

(
1± a

L3 − a2

8L6 ± ...
)
,

Ω
s
a
0z = Ω0

√
1∓ 2a

L3 ≈ Ω0

(
1∓ a

L3 − a2

2L6 ∓ ...
)
,

(11.5)

where
Ω0 =

2πe√
ma

(11.6)
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is natural frequency of the electronic shell of the atom (at L → ∞). The energy of
zero-point oscillations is

E =
1

2
~(Ωs0 + Ωa0) (11.7)

It is easy to see that the description of interactions between neutral atoms do not contain
terms 1

L3 , which are characteristics for the interaction of zero-point oscillations in the
electron gas (Eq.(6.7)) and which are responsible for the occurrence of superconductivity.
The terms that are proportional to 1

L6 manifest themselves in interactions of neutral atoms.

It is important to emphasize that the energies of interaction are different for different
orientations of zero-point oscillations. So the interaction of zero-point oscillations
oriented along the direction connecting the atoms leads to their attraction with energy:

Ez = −1

2
~Ω0

A2

L6
, (11.8)

while the sum energy of the attraction of the oscillators of the perpendicular directions (x
and y) is equal to one half of it:

Ex+y = −1

4
~Ω0

A2

L6
(11.9)

(the minus sign is taken here because for this case the opposite direction of dipoles is
energetically favorable).

11.3 The Estimation of Main Characteristic Parameters
of Superfluid Helium

11.3.1 The Main Characteristic Parameters of the Zero-Point
Oscillations of Atoms in Superfluid Helium-4

There is no repulsion in a gas of neutral bosons. Therefore, due to attraction between
the atoms at temperatures below

Tboil =
2

3k
Ez (11.10)

this gas collapses and a liquid forms.
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At twice lower temperature

Tλ =
2

3k
Ex+y (11.11)

all zero-point oscillations become ordered. It creates an additional attraction and forms a
single quantum ensemble.

A density of the boson condensate is limited by zero-point oscillations of its atoms. At
condensation the distances between the atoms become approximately equal to
amplitudes of zero-point oscillations.

Coming from it, we can calculate the basic properties of an ensemble of atoms with
ordered zero-point oscillations, and compare them with measurement properties of
superfluid helium.

We can assume that the radius of a helium atom is equal to the Bohr radius aB , as it
follows from quantum-mechanical calculations. Therefore, the energy of electrons on the
s-shell of this atom can be considered to be equal:

~Ω0 =
4e2

aB
(11.12)

As the polarizability of atom is approximately equal to its volume [56]

A ' a3
B , (11.13)

the potential energy of dispersive interaction (11.9), which causes the ordering zero-point
oscillations in the ensemble of atoms, we can represent by the equation:

Ex+y = − e
2

aB
a6
Bn

2, (11.14)

where the density of helium atoms

n =
1

L3
(11.15)

The velocity of zero-point oscillations of helium atom. It is naturally to suppose that
zero-point oscillations of atoms are harmonic and the equality of kinetic and potential
energies are characteristic for them:

M4v̂0
2

2
− e2

aB
a6
Bn

2 = 0, (11.16)
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where M4 is mass of helium atom, v̂0 is their averaged velocity of harmonic zero-point
oscillations.

Hence, after simple transformations we obtain:

v̂0 = cα3

{
n

n0

}
, (11.17)

where the notation is introduced:

n0 =
α2

a3
B

√
M4

2me
. (11.18)

If the expression in the curly brackets

n

n0
= 1, (11.19)

we obtain
v̂0 = cα3 ∼= 116.5 m/s. (11.20)

The density of liquid helium. The condition (11.19) can be considered as the definition
of the density of helium atoms in the superfluid state:

n = n0 =
α2

a3
B

√
M4

2me

∼= 2.172 · 1022 atom/cm3. (11.21)

According to this definition, the density of liquid helium-4

γ4 = nM4
∼= 0.1443 g/cm3 (11.22)

that is in good agreement with the measured density of the liquid helium 0.145 g/cm3 for
T ' Tλ.

Similar calculations for liquid helium-3 gives the density 0.094 g/cm3, which can be
regarded as consistent with its density 0.082 g/cm3 experimentally measured near the
boiling point.

The dielectric constant of liquid helium. To estimate the dielectric constant of helium
we can use the Clausius-Mossotti equation [56]:

ε− 1

ε+ 2
=

4π

3
nA. (11.23)
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At taking into account Eq.(11.13), we obtain

ε ≈ 1.040, (11.24)

that differs slightly from the dielectric constant of the liquid helium, measured near the
λ-point [57]:

ε ≈ 1.057 (11.25)

The temperature of λ-point. The superfluidity is destroyed at the temperature Tλ, at
which the energy of thermal motion is compared with the energy of the Van-der-Waals
bond in superfluid condensate

3

2
kTλ −

e2

aB
a6
Bn

2 = 0. (11.26)

With taking into account Eq.(11.21)

Tλ =
1

3k

M4

me

α4e2

aB
(11.27)

or after appropriate substitutions

Tλ =
1

3

M4c
2α6

k
= 2.177K, (11.28)

that is in very good agreement with the measured value Tλ = 2.172K.

The boiling temperature of liquid helium. After comparison of Eq.(11.8) - Eq.(11.9),
we have

Tboil = 2Tλ = 4.35K (11.29)

This is the basis for the assumption that the liquefaction of helium is due to the attractive
forces between the atoms with ordered lengthwise components of their oscillations.

The velocity of the first sound in liquid helium. It is known from the theory of the
harmonic oscillator that the maximum value of its velocity is twice bigger than its average
velocity. In this connection, at assumption that the first sound speed cs1 is limited by this
maximum speed oscillator, we obtain

cs1 = 2v̂0 ' 233 m/s. (11.30)
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It is in consistent with the measured value of the velocity of the first sound in helium,
which has the maximum value of 238.3 m/s at T → 0 and decreases with increasing
temperature up to about 220 m/s at T = Tλ.

The results obtained in this section are summarized for clarity in the Table 11.1.

The measurement data in this table are mainly quoted by [55] and [57].
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Table 11.1 Comparison of the calculated values of liquid helium-4 with the measurement data.

parameter defining formula calculated value measured value

the velocity of zero-point

oscillations of v̂0 = cα3 116.5

helium atom m/s

The density of atoms

in liquid n =
√

M4
2me

α2

a3
B

2.172 · 1022

helium atom/cm3

The density

of liquid helium-4 γ = M4n 144.3 145T'Tλ

g/l

The dielectric 1.048T'4.2

constant ε−1
ε+2

= 4π
3
α2
√

M4
2me

1.040

of liquid helium-4 1.057T'Tλ

The temperature

Tλ ' M4c
2α6

3
2.177 2.172

λ-point,K

The boiling

temperature Tboil ' 2Tλ 4.35 4.21

of helium-4,K

The first sound

velocity, cs1 = 2v̂0 233 238.3T→0

m/s
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11.3.2 The Estimation of Characteristic Properties of He-3

The estimation of characteristic properties of He-3. The results of similar calculations
for the helium-3 properties are summarized in the Table 11.2.

Table 11.2 The characteristic properties of liquid helium-3.

parameter defining formula calculated value measured value

The velocity of zero-point

oscillations of v̂0 = cα3 116.5

helium atom m/s

The density of atoms

in liquid n3 =
√

M3
2me

α2

a3
B

1.88 · 1022

helium-3 atom/cm3

The density

of liquid γ = M3n3 93.7 82.3

helium-3, g/l

The dielectric

constant ε−1
ε+2

= 4π
3
α2
√

M3
2me

1.035

of liquid helium-3

The boiling

temperature Tboil ' 4
3

Ex+y

k
3.27 3.19

of helium-3,K

The sound velocity

in liquid cs = 2v̂0 233

helium-3 m/s
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There is a radical difference between mechanisms of transition to the superfluid state
for He-3 and He-4. Superfluidity occurs if complete ordering exists in the atomic system.
For superfluidity of He-3 electromagnetic interaction should order not only zero-point
vibrations of atoms, but also the magnetic moments of the nuclei.

It is important to note that all characteristic dimensions of this task: the amplitude
of the zero-point oscillations, the atomic radius, the distance between atoms in liquid
helium - all equal to the Bohr radius aB by the order of magnitude. Due to this fact, we
can estimate the oscillating magnetic field, which a fluctuating electronic shell creates on
“its” nucleus:

HΩ ≈
e

a2
B

aBΩ0

c
≈ µB
A3

, (11.31)

where µB = e~
2mec

is the Bohr magneton, A3 is the electric polarizability of helium-3
atom.

Because the value of magnetic moments for the nuclei He-3 is approximately equal to
the nuclear Bohr magneton µnB = e~

2mpc
, the ordering in their system must occur below

the critical temperature

Tc =
µnBHΩ

k
≈ 10−3K. (11.32)

This finding is in agreement with the measurement data. The fact that the nuclear
moments can be arranged in parallel or antiparallel to each other is consistent with the
presence of the respective phases of superfluid helium-3.

Concluding this approach permits to explain the mechanism of superfluidity in liquid
helium.

In this way, the quantitative estimations of main parameters of the liquid helium and its
transition to the superfluid state were obtained.

It was established that the phenomenon of superfluidity as well as the phenomenon
of superconductivity is based on the physical mechanism of the ordering of zero-point
oscillations.
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